Search results

Search for "sensor array" in Full Text gives 16 result(s) in Beilstein Journal of Nanotechnology.

Design of surface nanostructures for chirality sensing based on quartz crystal microbalance

  • Yinglin Ma,
  • Xiangyun Xiao and
  • Qingmin Ji

Beilstein J. Nanotechnol. 2022, 13, 1201–1219, doi:10.3762/bjnano.13.100

Graphical Abstract
  • . Molecular simulation results indicated that the isomer discrimination is mainly due to the access of the isomers to different adsorption sites in the MOFs, which are sterically controlled by the rigid crystalline framework. Based on the same detection mode, the QCM-based sensor array coated with six
  • BiPyB = 1,4-bis(4-pyridyl)benzene. The achiral MOF structures were Cu3(BTC)2, Cu(BDC), and Cu(BPDC). The QCM sensor array successfully worked as an electronic nose system for detecting chiral odor molecules of limonene, 2-octanol, 1-phenylethanol, 1-phenylethylamine, and methyl lactate. The achiral MOF
  • structures showed very similar responses for isomers and could not distinguish different molecules, while the homochiral MOF structures could enantioselectively distinguish chiral molecules. The combined capability of the sensor array allowed for the enantioselective detection and discrimination of chiral
PDF
Album
Review
Published 27 Oct 2022

Application of nanoarchitectonics in moist-electric generation

  • Jia-Cheng Feng and
  • Hong Xia

Beilstein J. Nanotechnol. 2022, 13, 1185–1200, doi:10.3762/bjnano.13.99

Graphical Abstract
  • for green energy in the near future. MEGs are also widely used in sensors [54]. For example, a moisture-eletric touch sensor array can provide uniform and sensitive touch feedback (Figure 10e). As shown in Figure 10f, a breath detector can monitor different breathing patterns, including short breaths
PDF
Album
Review
Published 25 Oct 2022

A chemiresistive sensor array based on polyaniline nanocomposites and machine learning classification

  • Jiri Kroutil,
  • Alexandr Laposa,
  • Ali Ahmad,
  • Jan Voves,
  • Vojtech Povolny,
  • Ladislav Klimsa,
  • Marina Davydova and
  • Miroslav Husak

Beilstein J. Nanotechnol. 2022, 13, 411–423, doi:10.3762/bjnano.13.34

Graphical Abstract
  • 1999/2, 182 21 Prague, Czech Republic 10.3762/bjnano.13.34 Abstract The selective detection of ammonia (NH3), nitrogen dioxide (NO2), carbon oxides (CO2 and CO), acetone ((CH3)2CO), and toluene (C6H5CH3) is investigated by means of a gas sensor array based on polyaniline nanocomposites. The array
  • data by principal component analysis to be a highly accurate method reach to 99% of the classification of six different gases. Keywords: feature extraction; gas sensor; pattern recognition; sensor array; Introduction The control and monitoring of toxic gaseous substances, such as ammonia, nitrogen
  • (nanopowder), PANI/WO3 (nanotubes), PANI/In2O3, PANI/C60 (fullerene), PANI/nanocrystalline diamond (NCD), and PANI/BaTiO3, deposited on a flexible sensor array platform with a new design. Seven different nanocomposite sensing layers deposited on the array were exposed to six different gases (ammonia, carbon
PDF
Album
Full Research Paper
Published 27 Apr 2022

Extracting viscoelastic material parameters using an atomic force microscope and static force spectroscopy

  • Cameron H. Parvini,
  • M. A. S. R. Saadi and
  • Santiago D. Solares

Beilstein J. Nanotechnol. 2020, 11, 922–937, doi:10.3762/bjnano.11.77

Graphical Abstract
  • interpolation function (such as “interp1()” in MATLAB), which accepts a sample set of x-values (the Z-Sensor dataset), a sample set of y-values (the deflection dataset), and a set of “query points” to evaluate the interpolation with. The average Z-Sensor array created previously will act as the “input” (i.e
  • -Sensor array. A time array is then generated for each run by using the sampling frequency and number of points in that dataset as an estimate. Then, a spline is performed to re-sample the estimated time array such that it contains the exact same number of points as contained in the average Z-Sensor array
  • . At the end of this step, the user can directly average the predicted deflection and time arrays from all datasets to obtain the “average deflection” and “average time”. Clearly, when creating a list of numbers for the average Z-Sensor array at the beginning, it is critical to use an appropriate
PDF
Album
Supp Info
Correction
Full Research Paper
Published 16 Jun 2020

Hydrophilicity and carbon chain length effects on the gas sensing properties of chemoresistive, self-assembled monolayer carbon nanotube sensors

  • Juan Casanova-Cháfer,
  • Carla Bittencourt and
  • Eduard Llobet

Beilstein J. Nanotechnol. 2019, 10, 565–577, doi:10.3762/bjnano.10.58

Graphical Abstract
  • in a sensor array should be helpful for detecting polar and nonpolar species and to fight ambient moisture interference. Finally, some examples of functionalized and pristine MWCNTs employed in gas sensors operating at room temperature are summarized in Table 1, showing a comparison of sensitivities
PDF
Album
Supp Info
Full Research Paper
Published 27 Feb 2019

Bidirectional biomimetic flow sensing with antiparallel and curved artificial hair sensors

  • Claudio Abels,
  • Antonio Qualtieri,
  • Toni Lober,
  • Alessandro Mariotti,
  • Lily D. Chambers,
  • Massimo De Vittorio,
  • William M. Megill and
  • Francesco Rizzi

Beilstein J. Nanotechnol. 2019, 10, 32–46, doi:10.3762/bjnano.10.4

Graphical Abstract
  • separation of ≈250 μm, the flow sensor array described by Bruinink et al. [35] achieved very high sensitivity (minimal detectable flow amplitude) down to 2 mm s−1 in air flow. The 100-fold increase in acoustic sensitivity in comparison to their first-generation capacitive-based flow-sensor arrays [33][34
  • sensor array in parallel to two opposing, bent beams, air flow direction was determined by measuring the variation of platinum resistance between different cantilever beams with an external LCR meter (inductance L, capacitance C, and resistance R). The least resistance variation was caused by the upwind
PDF
Album
Full Research Paper
Published 03 Jan 2019

Electrospun one-dimensional nanostructures: a new horizon for gas sensing materials

  • Muhammad Imran,
  • Nunzio Motta and
  • Mahnaz Shafiei

Beilstein J. Nanotechnol. 2018, 9, 2128–2170, doi:10.3762/bjnano.9.202

Graphical Abstract
PDF
Album
Supp Info
Review
Published 13 Aug 2018

Metal oxide nanostructures: preparation, characterization and functional applications as chemical sensors

  • Dario Zappa,
  • Angela Bertuna,
  • Elisabetta Comini,
  • Navpreet Kaur,
  • Nicola Poli,
  • Veronica Sberveglieri and
  • Giorgio Sberveglieri

Beilstein J. Nanotechnol. 2017, 8, 1205–1217, doi:10.3762/bjnano.8.122

Graphical Abstract
  • compounds (SIAD, Italy) were injected inside the chamber for 30 min, followed by 1 h of recovery using synthetic air. The relative humidity was kept constant at 50%. Small sensor system The device we used in this work is a “Small Sensor System” (S3). The sensor array is located in a thermally controlled
  • chamber of 20 mL internal volume, where six sensors are placed: three thin films (SnO2–MoO3 [57], SnO2–WO3 [58], SnO2 with Ag catalyzer [59]) and three sensors based on metal-oxide nanowires (one of SnO2, two of ZnO). With the S3 sensor array it is possible to detect the presence of the microorganisms
PDF
Album
Full Research Paper
Published 06 Jun 2017

CVD transfer-free graphene for sensing applications

  • Chiara Schiattarella,
  • Sten Vollebregt,
  • Tiziana Polichetti,
  • Brigida Alfano,
  • Ettore Massera,
  • Maria Lucia Miglietta,
  • Girolamo Di Francia and
  • Pasqualina Maria Sarro

Beilstein J. Nanotechnol. 2017, 8, 1015–1022, doi:10.3762/bjnano.8.102

Graphical Abstract
  • . In a CMOS-compatible process, all these devices could be directly fabricated on the same chip at micrometre-size. It is finally worth mentioning that, once proven the reliability of this process, it paves the way for the creation of a sensor array, able to provide selective responses towards the
PDF
Album
Full Research Paper
Published 08 May 2017

Low temperature co-fired ceramic packaging of CMOS capacitive sensor chip towards cell viability monitoring

  • Niina Halonen,
  • Joni Kilpijärvi,
  • Maciej Sobocinski,
  • Timir Datta-Chaudhuri,
  • Antti Hassinen,
  • Someshekar B. Prakash,
  • Peter Möller,
  • Pamela Abshire,
  • Sakari Kellokumpu and
  • Anita Lloyd Spetz

Beilstein J. Nanotechnol. 2016, 7, 1871–1877, doi:10.3762/bjnano.7.179

Graphical Abstract
  • reference and one test capacitor for differential measurements, and four minimum-sized transistors, allowing the sensors to be packed densely. Cells located over the interdigitated plates of the capacitors increase the effective capacitance. The sensor array consisted of 16 rows and 5 columns. Within each
PDF
Album
Full Research Paper
Published 29 Nov 2016

Evaluation of gas-sensing properties of ZnO nanostructures electrochemically doped with Au nanophases

  • Elena Dilonardo,
  • Michele Penza,
  • Marco Alvisi,
  • Cinzia Di Franco,
  • Francesco Palmisano,
  • Luisa Torsi and
  • Nicola Cioffi

Beilstein J. Nanotechnol. 2016, 7, 22–31, doi:10.3762/bjnano.7.3

Graphical Abstract
  • strategies have been developed to improve the gas-sensing properties of MOS-based gas sensors. These include the synthesis of porous nanoparticles [25][26] the assembly of hierarchical structures [27][28], the use of catalysts and promoters [29][30], multi-sensor array systems [31], the optimization of the
PDF
Album
Full Research Paper
Published 08 Jan 2016

Pt- and Pd-decorated MWCNTs for vapour and gas detection at room temperature

  • Hamdi Baccar,
  • Atef Thamri,
  • Pierrick Clément,
  • Eduard Llobet and
  • Adnane Abdelghani

Beilstein J. Nanotechnol. 2015, 6, 919–927, doi:10.3762/bjnano.6.95

Graphical Abstract
  • patterns of Pt- or Pd-decorated carbon nanotubes compared to those of bare carbon nanotubes could help to increase selectivity if integrated into a sensor array. Detection of nitrogen dioxide The sensors decorated with Pd and Pt nanoparticles were tested for different concentrations against NO2. The
PDF
Album
Full Research Paper
Published 09 Apr 2015

Nanocavity crossbar arrays for parallel electrochemical sensing on a chip

  • Enno Kätelhön,
  • Dirk Mayer,
  • Marko Banzet,
  • Andreas Offenhäusser and
  • Bernhard Wolfrum

Beilstein J. Nanotechnol. 2014, 5, 1137–1143, doi:10.3762/bjnano.5.124

Graphical Abstract
  • 10.3762/bjnano.5.124 Abstract We introduce a novel device for the mapping of redox-active compounds at high spatial resolution based on a crossbar electrode architecture. The sensor array is formed by two sets of 16 parallel band electrodes that are arranged perpendicular to each other on the wafer
  • bodies [25]. This paper describes the design and fabrication of a crossbar-based nanocavity redox cycling sensor array that combines the advantages of the two approaches: crossbar architecture and nanocavity sensors. The large redox cycling amplification of the nanocavity sensors allows such arrays to be
  • the sensor array density (ca. 244/mm2). When using the current fabrication process, the sensor density is limited by the low yield of functional intersections, which is probably related to stability issues with the passivation layer. Solving this problem would in principle allow for high-density
PDF
Album
Full Research Paper
Published 23 Jul 2014

Plasmonics-based detection of H2 and CO: discrimination between reducing gases facilitated by material control

  • Gnanaprakash Dharmalingam,
  • Nicholas A. Joy,
  • Benjamin Grisafe and
  • Michael A. Carpenter

Beilstein J. Nanotechnol. 2012, 3, 712–721, doi:10.3762/bjnano.3.81

Graphical Abstract
  • a layer-by-layer process for nanocomposite preparation. PCA analysis was employed to illustrate the difference in response between H2 and CO for the co-sputtered and small-particle sample. These composites could serve as potential sensing materials in a sensor array for selective detection of H2, CO
PDF
Album
Full Research Paper
Published 31 Oct 2012

Towards multiple readout application of plasmonic arrays

  • Dana Cialla,
  • Karina Weber,
  • René Böhme,
  • Uwe Hübner,
  • Henrik Schneidewind,
  • Matthias Zeisberger,
  • Roland Mattheis,
  • Robert Möller and
  • Jürgen Popp

Beilstein J. Nanotechnol. 2011, 2, 501–508, doi:10.3762/bjnano.2.54

Graphical Abstract
  • within the first layer of the metallic surface, where the fluorescence signal will be quenched most efficiently. Thus, a parallel detection of fluorescence and SERS is prevented when applying a continuously nanostructured metallic layer, such as roughened metal electrodes, as a sensor array. (3) A
PDF
Album
Letter
Published 30 Aug 2011

Determination of object position, vortex shedding frequency and flow velocity using artificial lateral line canals

  • Adrian Klein and
  • Horst Bleckmann

Beilstein J. Nanotechnol. 2011, 2, 276–283, doi:10.3762/bjnano.2.32

Graphical Abstract
  • rectified reading of oscillatory flow fields. Nevertheless, arrays of hot wire anemometers were successfully used to determine the location of a moving dipole source up to a distance equalling the length of the sensor array, to access the signature of a wake caused by an upstream object and to determine the
PDF
Album
Full Research Paper
Published 06 Jun 2011
Other Beilstein-Institut Open Science Activities